Algorithm for the team (no_name):
The training data consisted of tweet and its location. The variables to be predicted were S, W and K which have been explained as follows:
s = sentiment
w = when
k = kind
============================================================
s1,"I can't tell"
s2,"Negative"
s3,"Neutral / author is just sharing information"
s4,"Positive"
s5,"Tweet not related to weather condition"
w1,"current (same day) weather"
w2,"future (forecast)"
w3,"I can't tell"
w4,"past weather"
k1,"clouds"
k2,"cold"
k3,"dry"
k4,"hot"
k5,"humid"
k6,"hurricane"
k7,"I can't tell"
k8,"ice"
k9,"other"
k10,"rain"
k11,"snow"
k12,"storms"
k13,"sun"
k14,"tornado"
k15,"wind"
w = when
k = kind
============================================================
s1,"I can't tell"
s2,"Negative"
s3,"Neutral / author is just sharing information"
s4,"Positive"
s5,"Tweet not related to weather condition"
w1,"current (same day) weather"
w2,"future (forecast)"
w3,"I can't tell"
w4,"past weather"
k1,"clouds"
k2,"cold"
k3,"dry"
k4,"hot"
k5,"humid"
k6,"hurricane"
k7,"I can't tell"
k8,"ice"
k9,"other"
k10,"rain"
k11,"snow"
k12,"storms"
k13,"sun"
k14,"tornado"
k15,"wind"
Competition Details : http://www.kaggle.com/c/crowdflower-weather-twitter
For classification we treated S, W and K separately and created different models for each of them. The dataset was also preprocessed separately for the 3 variables.
Functions implemented:
- Sanitization Function - Each tweet was sanitized prior to vectorization. The sanitization part converted all tweets to lower-case and replaced “cloudy” to “cloud”, “rainy” to “rain” and so on.
- Sentiment Dictionary - A list of words for different sentiments constituted the sentiment dictionary.
- Sentiment Scoring - we provided a score to each tweet if the tweet consisted of any words found in the sentiment dictionary.
- Tense Detection - A tense detector was implemented based on regular expressions and it provided score for “past”, “present”, “future” and “not known” to every tweet in the dataset.
- Frequent language detection - This function removed tweets for which language was not frequent (10 frequent languages were used).
- Tokenization - A custom tokenization function for tweets was implemented using NLTK.
- Stopwords - Stopwords like 'RT','@','#','link','google','facebook','yahoo','rt' , etc. were removed from the dataset.
- Replace Two or More - Repetitions of characters in a word were removed. Eg. “hottttt” was replaced with “hot”.
- Spelling Correction - Spelling correction was implemented based on Levenshtein Distance.
- Weather Vocabulary - A weather vocabulary was made by crawling a few weather sites which scored the tweets as related to weather or not.
- Category OneHot - The categorical variables like state and location were one hot encoded using this function.
Types of Data Used:
- All tweets
- Count Vectorization
- TFIDF Vectorization
- Word ngrams (1,2)
- Char ngrams (1,6)
- LDA on the data
- Predicted values of S, W and K using Linear Regression and Ridge Regression
Classifiers Used:
- Ridge Regression
- Logistic Regression
- SGD
Model:
- The different types of data were trained with both the classifiers and and ensemble was created from the different predictions.
- We used approximately 10 different model-data combinations for creating the final ensemble.
- The predictions for S and W were normalized between 0 and 1 in the end.
We also used the extra data for “S” available at : https://sites.google.com/site/crowdscale2013/shared-task/sentiment-analysis-judgment-data
Our model gave a score of 0.1469 on the leaderboard.
In the end we did an average with Jack to end up at 4th position.
After this competition I ended up in the first page of Kaggle rankings: http://www.kaggle.com/users/5309/abhishek
No comments:
Post a Comment